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50G CLASSROOM NOTES

Proof. From Theorem 2 with a=8=1/2 we obhtain

1[ 1+1:l+1[b 1+1]>1
2 L° 21" 2 1=

1

—[+b]+i[1+1]>2
2 2La =7

b
from which the required inequality follows.
CoROLLARY 2.2, IfA>0 then A +(1/8) = 2.
Proof. Let A=a2=52>0 in Corollary 2.1.

THE CATENARY AND THE TRACTRIX
Ropeet C. Yares, College of William and Mary

[June-July

Although the facts herein have been in the public domain for a long time,
our purpose is to re-establish them in an elementary way-—then set them on
parade in a relatively complete and ordered line of march. Note that we care-
fully avoid rectangular equations (per se¢) which, at least for the tractrix, have
an awesame appearance. Moreover, once a start is made, facts seem to tumble

over each other in their demand for recognition.

1. The catenary. A flexible and inextensible chain weighing m pounds per
foot hangs from two supports 4 and B. Equilibrium throughout is established
if the three forces: T, the magnitude of the variable tangential force at a repre-
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sentative point P; ma, the constant® horizontal force at the lowest point L;
and ms, the vertical weight of the chain length s= £B: have a resultant of zero
magnitude. That is, if # is the inclination of T

(1) T sin 8 = s, T cos 8 = ma,
s0 that
(2) § = atané,

an intrinsic equation of the curve, called the catenary. Since the chain hangs
steady, T is tangent to its locus at P and tan 8 is the slope of the curve.

In Figure 1, horizontal and wvertical x, ¥ axes are drawn with origin O dis-
tant e units below L. Let F be the foot of the ordinate of P and draw FQ per-
pendicular to the tangent line PT. Then, since LQFP =4,

PO = ks, FQ = Ra, v = ka- sec @

But for =0, ¥y =a, and thus 2=1. Accordingly, the tangent to the catenary at
any point is also tangent to the circle with center F and radius e.
From Equation (1), the tension is

(3 T = ma-sec 8§ = my,

a quantity equal to the weight of a length of the chain hanging vertically from
PtoF.

Since y=a-secd and generally dx={cos8}ds, then ydx=(a sec &) (cos8)ds
=ga-ds and thus

Area (OLPF) =f ydx = f ads = as.
¢ [i]

That is,
{4) Area (OLPF) = 2-Area (AFQP).

Furthermore, since ydx=ads or wy*dx =mayds, volume V, and surface area
Y . of revolution about the x-axis have the special relation

(5) We=1a..

Let PN be the normal length from P to the x-axis. Then, if R is the radius
of curvature at P, we have by definition from Equation (2):

2
€

ds
(6) R=‘—-—l=asec’6=
da

The center of curvature, however, is at N, opposite N from P.

* This is evident if we imagine resupporting the chain with pegs at various points P. The
shape of the chain does not change and thus the tension at I is constant in directian and magnitude.
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2. The tractrix. In Figure 1, PQ=s=ﬁ-ﬁ and thus the locus of @ is an invo-
lute of the catenary, a curve called the tractrix. Its tangent length QF is con-

Y

a Q o
P
oy [lmw .
M
Fi6. 2

stant and equal to a, and the curve can be pictured as the path of a toy wagon Q
pulled along by a child F. It is quite gbviously the orthogonal trajectory of
cireles of fixed radius a having centers on a line.

If ¢ is the inclination of the tangent, then the expression

y

6 ta.n¢=y'=i_—\/"a_";.__:y2:

y=a, x=10
defines four branches as shown in Figure 2.

Interesting and useful praperties of the tractrix are now established directly
from this differential equation (7) which we write as ydx= + +/a2—yidy.
Note first, however, that if ¢ ——-f@, dy=(sin $)de and, particularly here,
y=a sin ¢. The following measures of area A, radius of curvature p, volume V,
and surface area Y .. of revolution about the x-axis are immediate.

A4

i

2f ydx = 2f Vval — ytdy = ra?*

Va

-] & . 2
rf yldy = 21rf Vat — y? (ydy) = r ra’;
—_ ]

3. = 21rf yda = fo {a sin ¢}{csc ¢ dy) = 21rf ady = 2xa?;
—ce 0 L]

o lacotg]| =|—atang| = PQ
= = = — A = .
P s a cot ¢ a tan

* The form f* +/aP— yﬂdy measures the half-area of the circle ?4y*=a?* shown in Figure 2,
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The last item is recognized as the involute-evolute relation of the catenary and
tractrix. From it,

(8} c=|alnsing|,

an intrinsic equation of the tractrix.

The tractrix and its surface of revolution, called the pseudosphere, thus have
much in common with the circle and sphere. This striking analogy appears even
stronger if curvatures of the two surfaces are compared.

This curvature is determined as follows. A plane containing the normal to
a surface at () intersects the surface in a curve of curvature XK. As the plane
turns about the fixed normal, K may attain maximum and minimum wvalues
K and Ks. Their product KK, is defined as the curvature of the surface at Q.
These values K, K, occur in sections at right angles to each other.*

For a sphere all plane sections through a normal are great circles of radius ¢
and curvature 1/a. A sphere then has curvature 1/a?

For the pseudosphere, the section of minimum curvature at @ is made by
the plane through the axis of revolution; the maximurn radius of curvature is
QP. The minimum radius of curvature at @ is QM, formed by the plane per-
pendicular to the first. Their product (QM)(QP) = —(FQ)*= —a? ia constant
and negative since the radii are oppositely directed. Thus K,K;= —1/a?,

The plane, the sphere, and the pseudosphere are surfaces upon which we
may display the parabolic geometry of Euclid, the elliptic geometey of Rie-
mann, and the hyperbolic geometry of Lobatschewsky and Bolyai. These are
characterized by the angle-sum A+B+4+C of triangles formed by geodesics
{lines of shortest distance):

< hyperbelic
A+ B+ C{ ; } 180°{ parabolic
elliptic.
4+8290°
A+B ¥ a0* A+B ¢ 00"

Fic. 3

* Along the principal directions of the surface.
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A right circular cylinder may replace the plane. Figure 3 gives these surfaces
showing triangles with '=90° Their sides are each geodesics from point to
point.

On the cylinder A and C are taken on an element, B and € on a circle. 4
and B lie on a helix.

On the sphere the sides are great circles.

On the pseudosphere A and C are on a tractrix {a meridian of the surface),
B and C on a circle,

It appears that upon the sphere A-+B>90° and upon the pseudosphere
A-4+B <90° The fact that 44 B=9%"° on the cylinder is evident if we imagine
the cylinder as a roller in a printing press. The image of AB(C printed on plane
paper is a triangle with straight sides. Moreover, on the cylinder

Py ) ———

AB* = B(C? 4 CA2
As a final item, consider a pivot seated in a step. As the pivot turns, most
wear occurs on the surface farthest from the axis of rotation. In time the seat

Fre. 4

and pivot become incompatible and wobble occurs. We seek the shape of a
pivot such that the wear QQ,, Figure 4, parallel to the axis of ratation is the
same for all points @ of the pivot. Thus, as action and wear go on, the pivot
will reseat itself.

The amount of wear Qs normal to the section curve at Q(x, ¥) is propor-
tional to the work done by friction as the pivot turns. Let f be the coefficient of
friction, ¢ the pressure of the bearing, and # the number of revolutions per unit
time. Then, if k is the factor of proportionality {a hardness constant),

QQs = X()(p)(n)2ry).
If 00, is to be constant for all points ¢, then
001 = (0Q,) sec § = (kfpn}(y sec ) = constant,

where 8 is the angle between the normal and the axis, In short, ¥ sec §=a,
a constant. Thus, if OF be drawn tangent to the curve, QF=a, a definitive
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property of the tractrix. This is the form of the Schiele pivot mentioned in some
books on Mechanics,
We end the account with a list of rectangular equations of the tractrix:

#=asinh*valy T — 1~V ~ 3

x = g sech™! %—- va — ¢t

a a+ fat — 4t .
LAt Lt S Vvat — y?
2 a—+at—
t !
£ = {— atanh —, y = asech — -
a a

They seem relatively useless.

MATHEMATICAL EDUCATIONAL NOTES

EpiteDn BY JoBN A. BrowN, University of Delaware, AND
Joun R. Mavor, AAAS and University of Maryland

All materinl for this depariment should be sent to John R, Mayor, 1515 Massachuseits
Avenue, NW., Washington 5, D, C,

GEOMETRY IN THE FIRST GRADE

NEwTon S, HAWLEY AND PATRICK SUPPES, Stanford University

In the spring of 1958 we spent two and a half months in an experiment
which involved teaching geometrical notions and constructions to the entire
class of first grade students at Stanford Elementary Schoal (a public school in
the Palo Alto Unified School District). After a few informal talks we hegan a
systematic development of a modified version of Book I of Euclid’'s Elements.

Our approach was to stimulate reasoning among the pupils, although no
formal proofs were attempted. The propositions from Euclid which were stressed
were the constructions. In each case the construction (e.g., bisecting a line seg-
ment) was presented as an open problem, and the students were encouraged to
attempt solutions. As much as possible we forced the children to give the reasons
for rejecting an incorrect solution. Generally speaking, our pedagegical pro-
cedure closely resembled that of Sacrates' interrogation of the slave in Plato's
dialogue Meno. [t is worth noting that at no point did we rely on any knowledge
of arithmetic. As a consequence our program is completely independent of the
standard curriculum in elementary school mathematics.

Our main modification of Euclid was to use the compasses as rigid instru-
ments to make direct comparisons of distances. We thereby trivialized Proposi-
tions 2 and 3 of Book I.



